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Campus Plaine, Code Postal 231, 1050 Bruxelles, Belgium

In the literature different models have been presented to study polarization switching (PS)
in vertical-cavity surface-emitting lasers (VCSELs). In this work we have studied two of
them: the so-called Spin Flip Model due to San Miguel, Feng and Moloney (SFM), at-
tributing PS to specific amplitude-phase coupling, and the more phenomenological Gain
Saturation Model (GSM), attributing PS to linear and non-linear gain effects. By careful
use of a multiple-time scale technique we have thrown a bridge between the SFM and
GSM models in the parameter domain of high spin-flip rate and large birefringence. This
link has been used to discuss the similarities and differences between both models.

Introduction

Different models have been proposed in the literature to explain polarization switching
(PS) in VCSELs. A first model is of thermal nature and attributes PS to a spectral shift
of the gain maximum with respect to the cavity resonances for the two frequency-split
polarization modes [1]. Other authors adopted this idea and explained PS due to thermal
lensing [2], or by incorporating the temperature and frequency dependence of both losses
and gain [3]. The simplest mathematical description of gain-induced PS is based on stan-
dard multimode intensity rate equations. Both gain saturation, as well as a linear gain
difference between the two polarization modes are necessary ingredients to describe PS
in VCSELs [4].
A distinctively different model to describe the PS was introduced by San Miguelet al. [5]
and was extended to include frequency and gain anisotropies by Martin-Regaladoet al.
[6]. This model, also called the Spin Flip Model (SFM), describes the active semiconduc-
tor quantum-well in terms of a spin-split two level system, where the two spin subsystems
are coupled through spin flip processes described by a relaxation rateγs. It is desirable to
look at possible simplifications of the SFM in a physically relevant parameter domain. In
[7] van Exteret al. propose a set of intensity rate equations, derived from the SFM, by
exploiting the small ratio of carrier to the spin relaxation rate and assuming the birefrin-
gence large. The technique, also called rotational averaging, boils down to a projection
on the linear axes of the Poincar´e sphere. We would like to suggest a reduction technique
using a multiple-time scale analysis in the same parameter domain. This will give us the
opportunity of approximating the SFM dynamics in a mathematically sound manner and
enable us to study how and when such a reduction may fail.



Formulation and Adiabatical Elimination

The electric field is written as:

E(z; t) = [E+(t)e++E�(t)e�]exp(i(ω0t�k0z))+c:c: (1)

and is formulated mathematically in terms of four rate equations for the slowly varying
amplitudesE� of the left and right circularly polarized basis states [i.e.E�=(1=

p
2)(Ex�

iEy)] and two carrier numbersN andn. N is defined as the population difference between
conduction and valence band, whilen is the difference between the two spin subpopula-
tions, which couple separately to the circularly polarized fields. Including both phase,γp,
and amplitude anisotropy,γa, the SFM rate equations are written as [6]

Ė+ = κ(1+ iα)(N+n�1)E+� iγpE�� γaE�; (2)
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In eqs. (2)-(5)α is Henry’s linewidth enhancement factor andµ is the normalized injection
current.κ is the field decay rate,γ is the decay rate of the total population inversion, and
the spin flip rate,γs, accounts for the mixing of the populations with opposite spin. Typical
orders of magnitude can be found in the caption of Figure 1.
Introducing the amplitude/phase decomposition in thex=y-basis,Ex;y = Rx;yeiφx;y andφ =
φx�φy, we are able to rewrite eqs. (2)-(5) as a set of 5 scalar equations:
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where prime denotes derivation tos= γt.
Assumingγs >> γ(R2

x+R2
y) andN to be very close to 1, we can adiabatically eliminaten

from eq. (6)-(10) resulting in
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where the intensities,Px;y = R2
x;y. We have checked that this approximation is valid as

long asγs remains larger thanγp A further reduction of these 4 equations is possible [8],
exploitingκ >> γ.



Multiple-Time Scale Analysis

The next step in this work is the elimination of the phase dynamics associated withγp

assumingγs >> γp >> γ. We could have done this by averaging the equations, but we
have opted to use a more sound mathematical technique: a multiple-time scale analysis
[9] of eq. (11)-(14). We seek solutions which are functions of two times treated as inde-
pendent variables: a fast time scale,T = (γp=γ)s, and a slow time scale,τ = s. The goal is
to eliminate the fast time scale. The formal procedure consists of assuming a perturbation
expansion of the form

Px = P0
x (T;τ)+

γ
γp

P1
x (T;τ)+ : : : (15)

and similar equations for the other variables, whereP0
x (T;τ) andP1

x (T;τ) areO(1). Writ-
ing the zero order terms results in
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This means that the zero order intensities and population difference are functions ofτ
alone and that the zero order phase difference pulsates in 2T. Writing the first order terms
results in e.g. (more details can be found in [10])
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(17) is of the form∂X
∂T = f (T)+ f0, with f (T) a bound periodic function andf0 a constant

in T. On integrationf0 will lead to a secular term, unless the average in T of the right-hand
side of (17) equals zero. Applying this constraint to (17) and similar equations results in
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(18)-(20) is equal to the set of intensity rate equations found in [7]. This set is equivalent
to a GSM where self-saturation effects are neglected and cross-saturation effects are due
to spin dynamics. It should be emphasized that (18)-(20) do not exhibit PS, unless the
linear dichroism is assumed to vary with a parameter, e.g.γa = γa(µ). We have verified
our approximations numerically and found a good match with the SFM behavior in the
parameter domain (see Figure 1). Using the same method we are able to predict the first-
order corrections to eq. (18)-(20) e.g.
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So the first order terms will add a bound periodic term to the solution pulsating in the fast
time scale and only when both modes are present (e.g. during PS).
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Figure 1: Intensities of the linearly polar-
ized modes during PS. The intensity SFM
behavior has small periodic fluctuations in
the timescale ofγp, which are eliminated
by the multiple-time scale analysis. PS is
induced by switchingγa from 0:5ns�1 to
�0:5ns�1. (κ = 300ns�1, γs = 200ns�1,
γ = 1ns�1, γp = 10ns�1)

Conclusion

We have reduced the SFM in the physical parameter domain of high spin flip rate and
large birefringence to a set of intensity rate equations including cross-saturation effects
due to the spin dynamics. With the help of multiple-time scale analysis we are also able
to study first-order corrections to the approximation.
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