
'Hexagon-type' photonic crystal slabs based on SOI 
C.G. Bostan* and R.M. de Ridder 

Lightwave Devices Group, MESA+ Research Institute, University of Twente,  

P.O.Box 217, 7500 AE Enschede, The Netherlands 
*e-mail: c.g.bostan@el.utwente.nl 

In this paper we discuss the design of a novel category of photonic crystal slabs (PCS) 
and as an example, we consider structures based on SOI wafers. Fabrication issues 
related to lithographic accuracy are addressed, too. The geometry consists in a 
triangular lattice of hexagons having their symmetry axes rotated with respect to the 
lattice.We show that the mirror-symmetric 'hexagon-type' PCS with air claddings can 
have an absolute (i.e. polarization independent) gap in guided modes with normalized 
width of approximately 10%. This gap, although reduced to about 4%, is still present in 
an asymmetric geometry, when the under-cladding is a silicon oxide layer with deeply 
etched holes. 

Introduction 
A photonic crystal slab (PCS) may support guided modes because of its finite thickness. If 
the slab has mirror-symmetry with respect to its horizontal middle plane, a gap between 
guided modes of certain symmetry can be opened [1]. For example, a PCS with triangular 
lattice of circular holes has a large gap in even modes. There are several reasons for which 
an absolute gap, independent of mode symmetry, would be a desirable feature. First, 
coupling between modes of opposite symmetry is possible in real structures, due to 
fabrication intrinsic imperfections. Second, a reasonable coupling efficiency between PCS 
and a ridge waveguide would need careful control over the polarization state. Third, the 
condition of mirror symmetry leads to an increase in the complexity of the fabrication 
process in certain cases. A PCS with a significant absolute gap in guided modes was 
discussed only recently [2]. The example considered in this reference is the familiar 
triangular lattice of air holes in a PCS with mirror symmetry.  
In this paper we present two new structures based on silicon-on-insulator (SOI) substrates, 
having large, absolute gaps in guided modes. We present a design procedure and 
computations of dispersion diagrams. Fully-vectorial eigenmodes of Maxwell’s equations 
with periodic boundary conditions were computed using a freely available software 
package [3]. Limits imposed by the lithographic accuracy are considered. 

Two-dimensional photonic crystals 
A PCS is obtained from its two-dimensional (2D) photonic crystal (PhC) counterpart by 
truncating the infinite thickness down to a fraction of the lattice constant. The modes of the 
PCS-structure have a lower effective index, resulting in a shift of its band diagrams towards 
higher frequencies. Then, if the initial 2D PhC has an absolute (i.e. polarization-
independent) photonic band gap (PBG), this may be preserved in the PCS, depending on its 
thickness.  On the other hand, one can infer that a 2D PhC that does not have a PBG in 
either TE or TM polarizations can be discarded for practical purposes, since the resulting 
PCS will not have a gap in guided modes. Therefore, calculations of 2D PhC’s provide a 
good starting point in selecting promising structures for PCSs. Moreover, the calculation 
time is orders of magnitude shorter than that for 3D structures.  Optimization of the PBG is 
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difficult, because it involves solving a multiparametric inverse problem. There are countless 
combinations of lattice symmetry, scattering object shape, filling factor and refractive index 
contrast, but it is impossible to say which one gives the largest absolute PBG. A systematic 
algorithm is still lacking, and the design is based on several rules of thumb. It is known that 
absolute PBG’s are favored in PhC’s that satisfy the following criteria: (a) the refractive 
index contrast is as high as possible, (b) the Brillouin zone is close to a circle, (c) the shape 
of scattering objects matches the symmetry of the Brillouin zone [4], and (d) the PhC is 
comprised of isolated dielectric islands connected by narrow veins, implying a high filling-
factor for the low-index material.   
Wang at al [4] recently performed a study on band diagrams of a broad range of 2D PhC’s.  
They showed that an effective way of overlapping the TE and TM bands is by rotating 
noncircular 2D rods around their vertical (infinite) axis. The non-circular scattering objects 
introduce an additional degree of freedom (i.e. rotation angle), leading to an increased 
flexibility in the design, but also making the optimization even harder. 
Calculations of band diagrams are presented in many papers [5-8]. Sometimes, the authors 
considered “exotic” materials (e.g tellurium [8]) or extreme filling factors. Both approaches 
pose serious challenges to the technology for PCS.  In the design of a fabrication process 
for PCS’s one usually starts from the available technology and high refractive index 
materials. Lithographic accuracy puts a lower boundary on the achievable thickness of the 
veins and this should be accounted for when performing calculations. Our 2D calculations 
are targeted to PCS design using SOI, having a PBG centered at the telecom wavelength of 
1.55 µm. Therefore, we consider only PhC’s consisting of air holes etched vertically in a 
silicon slab (nSi = 3.45). We now discuss the band diagrams of a triangular lattice of 
hexagonal holes (referred to briefly as ‘hexagon-type’), a configuration potentially 
providing a large absolute PBG. 
Band diagrams were studied as a function of two geometrical parameters: size of air rods 
and their angular orientation with respect to the lattice. The air holes filling factor should be 
high enough, leaving only a limited size range of interest for the holes. In our design 
procedure we fix the size and vary the rotation angle, aiming at maximizing the PBG. 
Optimum results were obtained for the hexagon’s side R = 0.5a, where a is the lattice 
constant. This value will be assumed from now on in this paper. 
FIG. 1 shows the gaps for TE and TM polarizations and their overlap, as well as the veins’ 
thickness, as function of rotation angle α, in hexagon-type geometry. 
The veins’ thickness xhex is given by an analytical formula: hex sin(60 ) 2 sin 60x a Rα= ° + − ° . 
For α =0°, the corners of nearest-neighbor hexagons touch one another. The gap for TE is 
very large, completely enclosing the TM gap, so that the PBG coincides with the gap for 
TM. It is apparent that the maximum PBG is reached for 9α ° . The band diagrams for this 
rotation angle are shown in FIG. 2. The PBG is between (0.4045 0.4679)( )a λ , with the 
center frequency 0.4362 ( )a λ  and normalized width of 14.5%.  

Band diagrams of photonic crystal slabs 
Up to now, the most studied PCS geometry has been the mirror-symmetric slab with a 
triangular lattice of circular air holes. This configuration is known to have a large gap in 
guided even modes and a smaller gap for odd guided modes. Under certain conditions4, 
these gaps can be made to overlap, leading to an absolute gap of about 8.5%. Here we show 
that large absolute gaps are achievable in both symmetric and asymmetric hexagon-type 
PCS’s. 
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FIG. 1. Gap overlap as a function of rotation angle 
for air holes in a silicon background, hexagon side 
R = 0.5a; (hatched: gap for TE polarization; cross-
hatched: absolute band gap - coincides with gap for 
TM). Solid line: normalized vein thickness xhex/a 
versus rotation angle. 

FIG. 2. Band diagrams for hexagon-type 2D PhC 
(shown in inset), with hexagon side R = 0.5a and 
rotation angle a = 9°; solid and dashed lines are 
bands for TE and TM polarizations, respectively; 
the PBG is shaded grey (width 14.5%). 

 
The computational method requires a periodic cell. The PCS is patterned with a 2D 
periodic lattice and, in order to ensure 3D periodicity, we take a sequence of slabs 
periodical in the vertical direction (supercell) [1]. The period of the latter should be large 
enough so that the coupling among guided modes in adjacent slabs is negligible. The light 
cone divides the ω−k plane into two regions. Modes situated below the light-cone are 
confined in the slab and decay exponentially in the claddings. Modes above the light-cone 
are leaking into the claddings and they are interacting with one another; their frequencies 
calculated by the supercell method are false and we omit them from the graphical 
representation. During the numerical experiments we observed that, when slab thickness h 
is varied, the frequencies of odd modes are shifting at a higher rate than the frequencies of 
the even modes. Thus, h  can be used for optimizing the absolute gap size.   
We now proceed to calculating dispersion curves in PCS’s, using the optimum geometry 
parameters (R, α) for the 2D structure of air holes in silicon, as obtained above. These 
optima might shift when moving from the purely 2D case to the slab geometry, possibly 
allowing further optimization, which has not been pursued in this work. Depicted in FIG. 3 
(left panel) are band diagrams of guided modes in a hexagon-type symmetric PCS with air 
claddings and optimum thickness 0.59h a= . The absolute PBG is bounded by the second 
and third odd modes and the light cone and has 10.2% width. Tolerance of gap width with 
respect to h  leads to the following conclusion: for (0.575 0.608)h a= , the gap width is 
larger than 8%. Considering the midgap frequency for 1.55 mλ = µ , we get 777 nma = , 

388nmR = , 458nmh = , hex 52 nmx = . 
For an asymmetric hexagon-type PCS, with air and SiO2 2

( 1.45)SiOn =  upper and lower 
claddings respectively, the holes need to be etched through, deeply into the SiO2 in order to 
maximize the bandgap. The resulting PBG for this case is reduced to 4.1%, as shown in 
FIG. 3. (right panel). This happens because the light cone is shifted towards lower 
frequencies, which are determined by the first TM band of the 2D PhC bottom cladding. 
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FIG. 3. Left panel: band diagrams of guided modes in a symmetric hexagon-type PCS with air claddings 
(central frequency of the absolute gap: f0 = 0.5018a, gap width: 10.2%);  Right panel: band diagrams of 
guided modes in an asymmetric hexagon-type PCS with air upper cladding and SiO2 bottom cladding, both 
with thickness 4a; the air holes are penetrating the bottom-cladding; (central frequency of the absolute gap: 
f0 = 0.4785a, gap width: 4.1%);  geometrical parameters: R = 0.5a, α = 9°, h = 0.59a; 

Conclusions 
The hexagon-type PCS has some remarkable features: (a) its absolute gap is quite 
insensitive to variations of geometrical parameters; (b) the gap in even modes is very large, 
resulting in a high probability of obtaining an overlap with the gap for odd modes; and (c) 
the absolute gap is still present even in asymmetric PCS’s. Especially the latter property, 
which does not hold for structures with circular holes, opens the possibility of reducing 
complexity of the technological process when using common SOI wafers, leading to 
devices that are both mechanically and thermally more stable. 
The design presented here is the basis of a fabrication process that is currently under way. 
The experimental results will be presented in a following paper. 
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