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Few photon systems are best described by their wave fun@tber than by the usual
quantum field formalism. Until recently, the existence ofavevfunction for photons
has been an object of controversy. Important breakthrougiplened during the last ten
years, sharpening the wave function concept and giving reaipe definition. We show
how the photon wave function proposed by Bialynicki-Biraal Sipe connects to ex-
perimentally measurable quantities such as multi-photeangum correlation functions
and use it to investigate space-time entanglement of plpziwa produced in parametric
down-conversion.

I ntroduction

Few photon systems are best described by their wave fundibter than by the usual
quantum field formalism. Until recently, the existence of aves function for photons
has been an object of controversy because many peopledxbtieat one cannot assign a
position-representation wave function to a photon becati$e lack of a proper photon-
position operatof. However, it has been shown that a photon-position opecaiobe
constructed [1, 2]. Its Cartesian components are commudigignitian operators and
satisfy canonical commutation relatiof¥g, p;1 = ihd; with p, the photon momentum
operator. The eigenfunctionsbére transverse waves that can be interpreted as localised-
photon states [3]. The localised photon states are not Dieat functions like in non-
relativistic quantum mechanics. Nevertheless, they fobasas that permits to define the
positionrepresentation wave-function of single photons as lineantsnations of these
localised wave-packets. A position representationNgphoton systems can be defined
similarly by taking the tensor product of single-particlgdért spaces.

In this paper, we elucidate the connection between the wawibn of aN-photon sys-
tem, which is a mathematical representation of the systatae,sind experimentally mea-
surable quantities such as multi-photon quantum corogldtinctions. We then show
how the use of the wave-function formalism (WFF) can enkghour physical under-
standing of quantum optical systems by calculating how titaregglement of a photon
pair produced by parametric down-conversion propagatsgace and time.

Photon wave function and optical correlation functions

There is an arbitrariness in the definition of the photontpmsioperator [1]. Therefore,

several equally valid wave functions can be found in thediigre. Here, we use the wave
functiony (r, 1) = [w, (r, 1), w_(r, )]T advocated by Bialynicki-Birula [4, 5] because it is
directly related to the electric and magnetic fieklandB associated to a single photon:
v, = (e)/?E®) +ipg?B™)) /v/2, whereX™*) means the positive frequency part of field
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X. They-object is 6-component field (a “bi-vector”) made of two ovaly vector fields
v, andy_ representing a circularly polarised photon with positine @aegative helic-
ity, respectively. This representation is analogue to &srai-spinor representation of a
relativistic electron. In free-space, each vector compbhas a Fourier expansion that

reads
iter—ke £)

(27-[)3/2 ’ (1)

wherek = |k| ande. (k) are the unit circular polarisation vectors for photons jpiggt-
ing in the k-direction. Normalisation is such that the complex coedffits f. satisfy
Y-+ [k | &) [* = 1. The wave-functionp transforms as an elementary object under
Lorentz transformation. Multi-photon wave functions al#asned from tensor products
of single-photon ones.

The value of the wave function of a non relativistic partiatesome space-time poif ¢)

is directly related, through the modulus-square operatiorihe probability of finding
the particle at that point. We expect a similar property footon wave functions. In a
N-photon quantum optical system, the joint probability ttedéo ;-polarised photons at
space-time pointg; = (r;, t;) (i € {1,..., N}) is proportional to the correlation function

Y., 1) :fd?’k Vihkcey(k) fir(k)

CH @1y aN) = (EG) (1) .. EG) (@GN ES) (n) ... ES) (). 2)

In a recent paper [6], Smith and Raymer analyse the conmegétween the Bialynicki-
Birula wave function and correlation functions fof =1 and N = 2. Not surprisingly,
they find out that the connection is not straightforward beeathe square on the wave
function contains terms that are dependent on the magnatic fihey argue that the dis-
crepancy comes from the fact that (2) only measures joistilation when the detectors
are sensitive to the electric field, the square of the wavetion being a more general
measure of joint localisation. If we had detectors sensito/the magnetic field (for in-
stance, a magnetic dipole transition) Eq. (2) would be ofatemance while the square of
the wave function would still contain the right informatiabout detection probability. In
other words, when calculating joint detection probalgttby squaring the wave function,
we must ignore magnetic terms to get the right predictiongliectric-type detectors and
ignore electric terms for magnetic-type detectors. Thélgm with this point of view is
that, for any practical application of the WFF, there is noywa know which terms of
the wave function have a magnetic/electric origin (exceptifacing them back through
calculation).

To circumvent this fundamental difficulty, we modify the chtion of the wave function
in such a way that it still contains all the information abboth electric and magnetic
fields but has a simple connection to the correlation funsti(®) that are relevant for
photoelectric detection:

Y, )=y, (r,)+y_(r,1) = /20 EP(x,0). (3)

This representation of the photon field was first introducg®ipe [7]. Interestingly,
sincey ., andy_ are orthogonally polarised, they never mixMfis given,w, andy_
can be deduced. Therefore the information content in theowvdéaenction¥ is the same
as in the bi-vector fieldy: both representations are equivalent. Sipe’s singlegrhot
wave function is proportional to the positive frequencytdithe E-field. In optics, this
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complex field appears very often in the context of linear aod Imear propagation of
light and is called thenalytical E-field. For aN-photon state, the wave function is a
tensor whose elements;, », (g1, ..., qn) are such that

|‘P01...0N(QI, ey QN) |2 = (ZEO)NCé-]}D UN(QL eeey CIN)- (4)

This relation shows that in &-photon system, all correlations in space, time and po-
larisation that oneould measure in a photon counting experiment are “encoded” in the
complex field¥,. o, (q1,...gn). This includes quantum effects resulting from particle
entanglement and quantum interferences. Therefore, wheglyiag the WFF, the only
challenge consists in finding out how the multi-particle e/dunction propagates in a
given setup from sources to detectors.

Generalised Huygens-Fresnel principle

In order to understand how thé-photon correlations spread in space and time, we first
consider a situation in which the wave function propagatdsse-space. We also make
the simplifying assumption that we deal with paraxial stai&light, in which case po-
larisation does not change much during propagation. Taerefe restrict the following
discussion to a single polarisation component (droppihghal polarisation-related in-
dexes). Considering photons propagating along:tagis, we find that the wave function
at different space-time points can be calculated from it$ palues in some fixed “prepa-
ration plane”z = { using the following integral relation

e [ €0t || €

5
xd%m L (py, 1 - Iy~ p1|’ Pl N_|NCpN|) %)

Y(ry, f,...,EN, IN) =

Xy —p1l---lrn—pnl

We call it the generalised Huygens-Fresnel principle (HBP)N-photon wave functions
since it reduces to the standard HFP#o£ 1 [8]. InEq. (5),p; = (&;,n;,{) (j €11,..,N})
are vectors representing points in thplane anq;l (¢j,m;) are their transverse compo-
nents. In the optical domain, photons can be usually corsildes quasi-monochromatic.
Therefore, the wave function can be written

—i2me(LL 4.+ M)
Y(ry, f1,...,rN, IN) = alry, fy, ..., IN, IN)€ M N7, (6)

whereal(r, t1,...,ry, ty) is a slowly varying function of time andl; (j € {1,..., N}) are the
central wavelengths of the photons. Note that nothing hesegmts some of the photons
from having the same central wavelength nor even beingtindisishable. Inserting (6)
in Eq. (5) and taking into account thatr;, #1,...,ry, ty) is slowly varying with time, one
obtains the quasi-monochromatic form of the HFP:

(_ )N 2 2 1
a(rl,tl,...,rN,tN)— d . d PN

o (2m L (7)
el/ll [r1—p1l e1,1N|1‘N pnl

Ir; — p1l lry — pnl
y--prytN_ cee .
c lr; — p1l lrny —pnl

alpi,t —
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Propagation of entanglement in parametric down-conversion

We now show how to use Eq. (7) in order to calculate the prapagaf the entan-
glement of a photon pair generated by down-conversion inirartbn linear crystal.
Such photons are created simultaneously and at the sansdraa position, therefore
a(p1, i, p2, 1) x 6(f — )6 (py — py) in the output plane of crystal plane. Choosing the
crystal plane as th@xy plane, free space propagation behind the crystal resuttsein
following two-photon amplitude:

~1 ) L it — pt| It — | T m-ptl 15 e -pt
My ffd PO c T It —ptl I—-ptl ®
This formula shows that the detection of thephoton at point,; at timer; automatically
gives thel,-photon a spherical wavefront and a duration that dependseocrystal size.
If the A,-photon is detected first a similar effect will be observethwihe A,-photon. By
placing lenses in the system, spherical wavefronts can @ieséml leading to the well-
known quantum-imaging effect demonstrated by Pittman Jn Qur generalised HFP
accounts for this quantum effect in a much simpler way than@evious theoretical
description.

a(ry, t1,xo, )

Conclusion

We showed that, with a slight modification, the BialynickiiBa photon wave function
can be used to calculate space, time and polarisation aboes that arise in &-photon
system. We also established a generalised Huygens-Frasnebal that allows us to
compute the propagation of the wave function in the paragproximation. We illustrate
the power of the new formalism by calculating the propagatibentanglement in a two-
photon system generated by parametric down-conversion.
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