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Few photon systems are best described by their wave functionrather than by the usual
quantum field formalism. Until recently, the existence of a wave function for photons
has been an object of controversy. Important breakthrough happened during the last ten
years, sharpening the wave function concept and giving it a precise definition. We show
how the photon wave function proposed by Bialynicki-Birulaand Sipe connects to ex-
perimentally measurable quantities such as multi-photon quantum correlation functions
and use it to investigate space-time entanglement of photonpairs produced in parametric
down-conversion.

Introduction
Few photon systems are best described by their wave functionrather than by the usual
quantum field formalism. Until recently, the existence of a wave function for photons
has been an object of controversy because many people believed that one cannot assign a
position-representation wave function to a photon becauseof the lack of a proper photon-
position operator̂r. However, it has been shown that a photon-position operatorcanbe
constructed [1, 2]. Its Cartesian components are commutingHermitian operators and
satisfy canonical commutation relations[r̂k , p̂l ] = iħδkl with p̂, the photon momentum
operator. The eigenfunctions ofr̂ are transverse waves that can be interpreted as localised-
photon states [3]. The localised photon states are not idealDirac functions like in non-
relativistic quantum mechanics. Nevertheless, they form abasis that permits to define the
positionrepresentation wave-function of single photons as linear combinations of these
localised wave-packets. A position representation forN -photon systems can be defined
similarly by taking the tensor product of single-particle Hilbert spaces.
In this paper, we elucidate the connection between the wave function of aN -photon sys-
tem, which is a mathematical representation of the system state, and experimentally mea-
surable quantities such as multi-photon quantum correlation functions. We then show
how the use of the wave-function formalism (WFF) can enlighten our physical under-
standing of quantum optical systems by calculating how the entanglement of a photon
pair produced by parametric down-conversion propagates inspace and time.

Photon wave function and optical correlation functions
There is an arbitrariness in the definition of the photon position operator [1]. Therefore,
several equally valid wave functions can be found in the literature. Here, we use the wave
functionψ̄(r, t ) = [ψ+(r, t ),ψ−(r, t )]T advocated by Bialynicki-Birula [4, 5] because it is
directly related to the electric and magnetic fieldsE andB associated to a single photon:
ψ± = (

ǫ1/2
0 E(+) ± iµ−1/2

0 B(+)
)

/
p

2, whereX (+) means the positive frequency part of field
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X . Theψ̄-object is 6-component field (a “bi-vector”) made of two ordinary vector fields
ψ+ andψ− representing a circularly polarised photon with positive and negative helic-
ity, respectively. This representation is analogue to Dirac’s bi-spinor representation of a
relativistic electron. In free-space, each vector component has a Fourier expansion that
reads

ψ±(r, t ) =
∫

d3k
p
ħkc e±(k) f±(k)

ei(k·r−kc t)

(2π)3/2
, (1)

wherek = |k| ande±(k) are the unit circular polarisation vectors for photons propagat-
ing in the k-direction. Normalisation is such that the complex coefficients f± satisfy∑

h=±
∫

d3k | fh(k)|2 = 1. The wave-functionψ̄ transforms as an elementary object under
Lorentz transformation. Multi-photon wave functions are obtained from tensor products
of single-photon ones.
The value of the wave function of a non relativistic particleat some space-time point(r, t )
is directly related, through the modulus-square operation, to the probability of finding
the particle at that point. We expect a similar property for photon wave functions. In a
N -photon quantum optical system, the joint probability to detectσi -polarised photons at
space-time pointsqi = (ri , ti ) (i ∈ {1, ..., N }) is proportional to the correlation function

C (N)
σ1...σN

(q1, ..., qN ) = 〈Ê (−)
σ1

(q1) . . . Ê (−)
σN

(qN )Ê (+)
σN

(qN ) . . . Ê (+)
σ1

(q1)〉. (2)

In a recent paper [6], Smith and Raymer analyse the connection between the Bialynicki-
Birula wave function and correlation functions forN = 1 and N = 2. Not surprisingly,
they find out that the connection is not straightforward because the square on the wave
function contains terms that are dependent on the magnetic field. They argue that the dis-
crepancy comes from the fact that (2) only measures joint localisation when the detectors
are sensitive to the electric field, the square of the wave function being a more general
measure of joint localisation. If we had detectors sensitive to the magnetic field (for in-
stance, a magnetic dipole transition) Eq. (2) would be of no relevance while the square of
the wave function would still contain the right informationabout detection probability. In
other words, when calculating joint detection probabilities by squaring the wave function,
we must ignore magnetic terms to get the right predictions for electric-type detectors and
ignore electric terms for magnetic-type detectors. The problem with this point of view is
that, for any practical application of the WFF, there is no way to know which terms of
the wave function have a magnetic/electric origin (except for tracing them back through
calculation).
To circumvent this fundamental difficulty, we modify the definition of the wave function
in such a way that it still contains all the information aboutboth electric and magnetic
fields but has a simple connection to the correlation functions (2) that are relevant for
photoelectric detection:

Ψ(r, t ) =ψ+(r, t )+ψ−(r, t ) =
√

2ǫ0 E(+)(r, t ). (3)

This representation of the photon field was first introduced by Sipe [7]. Interestingly,
sinceψ+ andψ− are orthogonally polarised, they never mix: ifΨ is given,ψ+ andψ−
can be deduced. Therefore the information content in the vector functionΨ is the same
as in the bi-vector fieldψ̄: both representations are equivalent. Sipe’s single-photon
wave function is proportional to the positive frequency part of the E-field. In optics, this
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complex field appears very often in the context of linear and non linear propagation of
light and is called theanalytical E-field. For aN -photon state, the wave function is a
tensor whose elementsΨσ1...σN (q1, ..., qN ) are such that∣∣Ψσ1...σN (q1, ..., qN )

∣∣2 = (2ǫ0)N C (N)
σ1...σN

(q1, ..., qN ). (4)

This relation shows that in aN -photon system, all correlations in space, time and po-
larisation that onecould measure in a photon counting experiment are “encoded” in the
complex fieldΨσ1...σN (q1, ..., qN ). This includes quantum effects resulting from particle
entanglement and quantum interferences. Therefore, when applying the WFF, the only
challenge consists in finding out how the multi-particle wave function propagates in a
given setup from sources to detectors.

Generalised Huygens-Fresnel principle
In order to understand how theN -photon correlations spread in space and time, we first
consider a situation in which the wave function propagates in free-space. We also make
the simplifying assumption that we deal with paraxial states of light, in which case po-
larisation does not change much during propagation. Therefore we restrict the following
discussion to a single polarisation component (dropping all the polarisation-related in-
dexes). Considering photons propagating along thez-axis, we find that the wave function
at different space-time points can be calculated from its past values in some fixed “prepa-
ration plane”z = ζ using the following integral relation

Ψ(r1, t1, . . . ,rN , tN ) = 1

(2πc)N

Ï
d2ρ⊥

1 . . .
Ï

d2ρ⊥
N

×
d

dt1
· · · d

dtN
Ψ(ρ1, t1 − |r1−ρ1|

c , . . . ,ρN , tN − |rN−ρN |
c )

|r1 −ρ1| · · · |rN −ρN | .

(5)

We call it the generalised Huygens-Fresnel principle (HFP)for N -photon wave functions
since it reduces to the standard HFP forN = 1 [8]. In Eq. (5),ρ j = (ξ j ,η j ,ζ) ( j ∈ {1, ..., N })
are vectors representing points in theζ-plane andρ⊥

j = (ξ j ,η j ) are their transverse compo-
nents. In the optical domain, photons can be usually considered as quasi-monochromatic.
Therefore, the wave function can be written

Ψ(r1, t1, . . . ,rN , tN ) = a(r1, t1, . . . ,rN , tN )e
−i2πc(

t1
λ1

+...+ tN
λN

)
, (6)

wherea(r1, t1, . . . ,rN , tN ) is a slowly varying function of time andλ j ( j ∈ {1, ..., N }) are the
central wavelengths of the photons. Note that nothing here prevents some of the photons
from having the same central wavelength nor even being indistinguishable. Inserting (6)
in Eq. (5) and taking into account thata(r1, t1, . . . ,rN , tN ) is slowly varying with time, one
obtains the quasi-monochromatic form of the HFP:

a(r1, t1, . . . ,rN , tN ) = (−i)N

λ1 . . .λN

Ï
d2ρ⊥

1 . . .
Ï

d2ρ⊥
N

a(ρ1, t1 − |r1 −ρ1|
c

, . . . ,ρN , tN − |rN −ρN |
c

)
e

i 2π
λ1

|r1−ρ1|

|r1 −ρ1|
. . .

e
i 2π
λN

|rN−ρN |

|rN −ρN | .

(7)
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Propagation of entanglement in parametric down-conversion
We now show how to use Eq. (7) in order to calculate the propagation of the entan-
glement of a photon pair generated by down-conversion in a thin non linear crystal.
Such photons are created simultaneously and at the same transverse position, therefore
a(ρ1, t1,ρ2, t2) ∝ δ(t1 − t2)δ(ρ⊥

1 −ρ⊥
2 ) in the output plane of crystal plane. Choosing the

crystal plane as theOx y plane, free space propagation behind the crystal results inthe
following two-photon amplitude:

a(r1, t1,r2, t2) ∝ −1

λ1λ2

Ï
d2ρ⊥δ(t1−|r1 −ρ⊥|

c
−t2+|r2 −ρ⊥|

c
)

e
i 2π
λ1

|r1−ρ⊥|

|r1 −ρ⊥|
e

i 2π
λ2

|r2−ρ⊥|

|r2 −ρ⊥| . (8)

This formula shows that the detection of theλ1-photon at pointr1 at timet1 automatically
gives theλ2-photon a spherical wavefront and a duration that depends onthe crystal size.
If the λ2-photon is detected first a similar effect will be observed with theλ1-photon. By
placing lenses in the system, spherical wavefronts can be focused leading to the well-
known quantum-imaging effect demonstrated by Pittman in [9]. Our generalised HFP
accounts for this quantum effect in a much simpler way than any previous theoretical
description.

Conclusion
We showed that, with a slight modification, the Bialynicki-Birula photon wave function
can be used to calculate space, time and polarisation correlations that arise in aN -photon
system. We also established a generalised Huygens-Fresnelprincipal that allows us to
compute the propagation of the wave function in the paraxialapproximation. We illustrate
the power of the new formalism by calculating the propagation of entanglement in a two-
photon system generated by parametric down-conversion.
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