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Hyperbolic metamaterials are extremely anisotropic materials with iso-frequency sur-
faces shaped as hyperboloids, unlike natural materials. These metamaterials are inter-
esting for many applications thanks to the large density of states and the extreme confine-
ment of light they provide. We show that the dispersion of metamaterials made of square
or rectangular metal nanorods in a 2D lattice can be understood via the coupling of el-
ementary excitations, which often turn out to be the plasmons supported by the nanorod
corners. Depending on the size of the nanorods, coupling occurs mainly through the
dielectric or through the metal.

State of the art
Metamaterials have created a huge interest thanks to their extraordinary light control po-
tential, impossible with natural materials [1, 2]. Among metamaterials, hyperbolic meta-
materials (HMMs) caught the attention because of their extreme photonic density of states
[3] and very large refractive index [4, 5], thanks to the anisotropy. HMMs are a particular
case of an anisotropic medium where components of the diagonalized permittivity tensor
are of opposite sign.
Classicaly, two types of structures are used to obtain the hyperbolic properties [6]: a
periodic metal/dielectric multilayer structure (Fig. 1a) and an array of cylindrical metallic
nanorods in a dielectric host (Fig. 1b).
In the case of the multilayer structure, effective medium theory (EMT) can be applied
giving:

ε‖ =
εmdm + εddd

dm +dd
(1)

ε⊥ =
εmεd(dm +dd)

εmdd + εddm
(2)

with ε‖ the permittivity in the direction parallel to the layers, ε⊥ the permittivity in the
direction perpendicular to the layers, εm and εd the permittivity of the metal and the
dielectric, respectively, dm and dd the thickness of the metal and dielectric layers, re-
spectively. The dispersion relation for extraordinary waves (TM polarisation) for such
structures according to EMT is:

k2
‖

ε⊥
+

k2
⊥

ε‖
=

ω2

c2 (3)

and for a regime where ε‖ε⊥< 0, the isofrequency surface is an open hyperboloid (Fig. 1c).
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Figure 1: (a) HMM consisting of alternating periodic subwavelength layers of silver and
TiO2. (b) HMM consisting of on an array of cylindrical silver nanorods in a TiO2 host.
(c) Isofrequency contour for a multilayer HMM with dAg = 10 nm and dTiO2 = 20 nm.

In 2013, Zhukovsky et al. shows the plasmonic origin of the hyperbolic properties in a
multilayer HMM, so that the modes are explained as the coupling of short-range surface
plasmon polaritons (SPPs) of each unit cell [7]. In 2011, Rosenblatt and Orenstein pro-
pose a method to describe the dispersion of multilayer HMMs as a competition between
the coupling of gap modes (coupling of the surface plasmons at each metal/dielectric in-
terface through the dielectric) and slab modes (coupling of the surface plasmons at each
metal/dielectric interface through the metal) [8]. The purpose of this paper is to show an
analogical demonstration for the more complicated 2D structures.

Analysis method
We numerically study the dispersion of arrays of silver (Ag) square and rectangular
nanorods of various sizes in a TiO2 host (Fig. 2a). We take the refractive index of TiO2
nTiO2 = 2.7 and a drude model for silver with ωp = 1.26×1016 Hz, where ωp is the plasma
frequency of silver. Contrary to the multilayer case were the simplest excitation possible
is the SPP, the simplest excitation here is the plasmon carried by the corner of a nanorod.
We fix the period of the array P = 30 nm, wich is much smaller than the wavelength in
the regime analysed (from visible to near infrared). Four cases are examined: array of
small (compared to the period) square nanorods with width w of the rod w = 8 nm, large
square nanorod with w = 25 nm, medium size square nanorod with w = 16.3 nm and rect-
angular nanorod with wx = 20 nm and wy = 10 nm. There are three elementary excitations
possible in this case, following through which medium the coupling between corners is
stronger: a single rod (coupling mainly through the metal, Fig. 2b), 4 corners structure
(coupling mainly through the dielectric, Fig. 2c) and coupled rods structure (coupling
mainly through metal in one direction and dielectric in the other one, Fig. 2d).
To determine from which elementary excitation the dispersion of the array originates, we
look which elementary excitation is near the center of each plasmonic band, mathemati-
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Figure 2: (a) Structure under study, array of square/rectangular nanorods. Elementary
structures: (b) single rod, (c) 4 corner structure, (d) two semi-infinite coupled rods.

cally meaning that the elementary excitation is approximatively equal to the mean:

ωelementary(kz)≈
ωarray(Γ,kz)+ωarray(X1,kz)+ωarray(M,kz)

3
(4)

for the array of square nanorods and

ωelementary(kz)≈
ωarray(Γ,kz)+ωarray(X1,kz)+ωarray(X2,kz)+ωarray(M,kz)

4
(5)

for the array of rectangular nanorods, where ωelementary is the frequency of the elemen-
tary excitation and ωarray the frequency of the array structure at the Γ(kx = ky = 0),
X1(kx =

π
P ,ky = 0), X2(kx = 0,ky =

π
P) and M(kx = ky =

π
P) points. The difference be-

tween the array of square and rectangular nanorods is that the symmetry between the x
and y direction is broken for the rectangular nanorods and so X1 6= X2.

Results
Contrary to the multilayer case, where only two different modes exist (a symmetric and an
asymmetric one), the array of nanorods presents 4 different modes that can be symmetric
or asymmetric in the x and y directions. We only present here the results for the mode
symmetric in the x and y directions (Fig. 3) but the conclusions are the same for the four
modes. We can see that the center of the plasmonic band corresponds very well with the
single rod mode for the array of small nanorods (Fig. 3a) and thus, the coupling between
the corners occurs mainly via the metal.
For the array of large nanorods however, the single rod is no more the elementary excita-
tion that explains the dispersion, because the coupling occurs mainly through the dielec-
tric, and thus the elementary excitation is the 4 corner structure mode (Fig. 2c).
The case of medium size nanorods is more complicated because the elementary excitation
depends on the symmetry of the mode and on the frequency, meaning that at this regime
of size the coupling through metal and dielectric is in the same order of magnitude and
depends strongly on the frequency (Fig. 3c).
Finally, the center of the plasmonic bands for the rectangular nanorod case corresponds
very well with the coupled rod excitations, meaning that the coupling occurs mainly
through the metal in one direction and through the dielectric in the other one (Fig. 3d).
In conclusion, we have shown a method to understand the dispersion of an array of square
or rectangular nanorods of any size, which opens the way to comprehend the dispersion
of many types of metamaterials via their elementary excitations.
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(a) Small nanorods
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(b) Large nanorods
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(c) Medium nanorods
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(d) Rectangular nanorods
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Figure 3: Comparison between the center of the plasmonic band (obtained with equation
4 or 5, black dashed curve) and the elementary excitations for the mode symmetric in the
x and y directions.
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