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Abstract: Bragg gratings (BG) are resonant structures that exhibit a strong dispersion 
close to their transmission stopband, enabling wave-vector modifications. Integrated BG 
can be made by coupling evanescently from a straight waveguide to an auxiliary periodic 
structure. This can be exploited either to enable phase-mismatch compensation in an 
OPA [1], or quasi-phase matching in hybrid waveguides [2]. Here, we develop a method 
to design a grating that allows phase-mismatch compensation for a Bragg-Scattering 
Four-Wave-Mixing process (BS-4WM). As a result, we can predict by means of 
numerical simulations that this grating-assisted phase-matching allows unprecedented 
conversion bandwidth. We also design structures allowing an experimental 
demonstration with existing technologies. 
Four-Wave Mixing (4WM) finds applications in frequency conversion [3] or quantum 
entanglement [4] and Bragg-Scattering Four-Wave Mixing (BS-4WM) is a specific 4WM 
process that is phase-sensitive. BS-4WM is therefore theoretically noise free as it transfers 
directly energy from signal to idler waves as depicted in figure 1. It can preserve quantum 
states during the conversion [5] and has been used for optical switches [6]. BS-4WM has 
already been demonstrated in highly nonlinear fibers [7] and SiN waveguides [8]. Fibers 
exhibit a low nonlinear coefficient 𝛾, so that meters of fiber are typically needed to 
observe an efficient conversion. Meanwhile, waveguides have a higher 𝛾	and typically 
sub-meter interaction lengths, hence lower accumulated dispersion. In both cases, 
efficient conversion requires to satisfy the phase-matching condition: Δ𝛽𝐿 < 2𝜋. This 
condition is expressed as a function of the wave vectors (momenta) 𝛽! = 𝑛(𝜔!)
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Figure 1. Bragg scattering Four Wave Mixing. Two intense light fields (“pump” fields, at ωP1, ωP2) and a 
weaker one (at ωs) propagate inside the material. Two photons (at ωP2, ωs) are annihilated and two photons  



 

 

are generated (at ωP1, ωi) while satisfying energy and momentum conservation laws:  ħΔω = 0 and  ħΔβ=0 
with Δω = (ωP1 + ωi) – (ωP2 + ωs) and the phase mismatch Δβ = (βP1 + βi) – (βP2 + βs).  
with 𝑛 the refractive index associated to each wave frequency 𝜔$%, 𝜔$&, 𝜔', 𝜔(, and is 
expressed as 𝛥𝛽	 = 	 (𝛽$% 	+ 	𝛽()	–	(𝛽$& 	+ 	𝛽') in the configuration depicted in figure 1. 
In that typical configuration, the pump wavelengths and the single photon wavelengths 
have to be on opposite sides of the 0-group velocity dispersion (0-GVD) wavelength. That 
condition can be challenging or even impossible for some set of wavelengths due to the 
limited control on the 0-GVD by dispersion engineering. Indeed, if phase engineering has 
been extensively applied for optimization of 4WM in SiN and Si waveguides, it typically 
requires affecting both the width and the thickness of the core materials. This is not 
always possible because of fabrication constraints, or bare availability of the process for 
multi projects wafer run (MPW) services. The influence of a Bragg Grating on the 
generation of solitons has been studied more than two decades ago [9], while its positive 
effects on OPA operation was reported more recently [1]. Non-resonant gratings have 
also been exploited, including in four wave mixing demonstrations [2]. Similarly to 
dispersion engineering used for 4WM [10,11], we engineer a grating to allow phase 
matching of a given BS-4WM process.  
The wavelength conversion efficiency 𝜂 via BS-FWM can be simply expressed as [5] 

𝜂 = |2𝛾𝑃𝐿|&sinc²(:(2𝛾𝑃)& + 𝛥𝛽&𝐿)                            (eq. 1) 
when pump powers 𝑃 are equal [12], 𝛾 is the non-linear coefficient, 𝐿 the interaction 
length and 𝛥𝛽 the phase-mismatch. The conversion is unity when 𝛾𝑃𝐿 = )

*
 and 𝛥𝛽 = 0.	

This maximum conversion can be hard to reach. Indeed, choosing the frequencies of 
photons that interact will constrain the phase-mismatch 𝛥𝛽, as the wave vectors are 
function of the frequency: 𝛽 = 𝑛(𝜔)"
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	, with 𝑛 the optical index.  A Bragg grating 

exhibits a spectral domain (bandgap) where transmission is forbidden around a resonance 
frequency 𝜔+,' =
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 with the grating period 𝛬 and the mean index 𝑛/,0-[13]. 
Outside of this bandgap, the grating has a strong influence 𝑞(𝜔) on the wave vector 𝛽 of 
the propagating fields. It is defined in a linear regime by:  

𝑞&(𝜔) = 𝛿& − 𝜅&                                          (eq. 2) 
With 𝛿	 = 	𝛽(𝜔) − )

.
 and the strength of the grating 𝜅 ≈ &)

1
𝑑𝑛 , dependent of the index 

modulation amplitude 𝑑𝑛. In practice, 𝑞(𝜔) is calculated using a Taylor expansion 
around the resonance frequency 𝜔+,' [13]. These analytical formulas can be included in 
the expression of effective wave vectors   

𝛽𝑒𝑓𝑓 = 𝛽 + 𝑞(𝜔)                (eq. 3) 
as long as the nonlinear interaction is weak enough. Indeed,	𝑞	should be corrected for the 
Kerr-induced nonlinear phase: 𝑞 = − 23%45&6
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with f a real parameter that quantifies the energy distribution between transmitted and 
reflected fields. We have |𝑞-:-	<(-,0+ − 𝑞<(-,0+| =

7$
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&

%85&
E. Because ℎ(𝑥) = | %4=

&

%8=&
| 

maps the real numbers onto [0;1], ℎ(𝑥) ≤ 1 so we deduce that |𝑞-:-	<(-,0+ − 𝑞<(-,0+| ≤
7$
&

 irrespective of the details of the grating or the wavelength detuning between the field 
and the grating resonance.  As 𝑃 = )

*7>
  for unity efficient BS-4WM, we have that Δ𝑞 =

|𝑞-:-	<(-,0+ − 𝑞<(-,0+| ≤
)
?>

. That nonlinear correction is significantly smaller than the 
phase mismatch that we can accept: Δ𝑞 ≪ 2𝜋/𝐿.  Thus, the linear expression for the 



 

 

grating-induced dispersion is a good approximation in our case. Therefore, equations (2) 
and (3) can be combined to seek the proper phase matching Δβ	 < 2𝜋/𝐿	 demanded  

by eq 1. Hence, for a typical 1cm-long grating, and 𝛾𝑃𝐿 = )
*
, the linear formula of 𝛽,55 

gives an error of 0.4 cm-1 much smaller than the phase mismatch bound of  6.28 cm-1.  
We now can examine a practical situation for which the grating resonance is close to the 
pump field at 𝜔$%	. In that scenario, 𝛽$% undergoes the grating influence so that 𝛽$%,,55 	=
	𝛽$% 	+ 	𝑞(𝜔) while other waves remain unaffected by the presence of the grating 
(principle illustrated in figure 2). One can then express the modified phase mismatch as 
𝛥𝛽AB =	 (𝛽$%,,55 + 𝛽()	–	(𝛽$& + 𝛽') = 𝛥𝛽 + 𝑞(𝜔) implying that the influence of the 
grating 𝑞(𝜔) directly comes in the phase mismatch.  
To illustrate the benefit of this design, we focus on a particular configuration involving 
pump fields at λP1=2090 nm and λP2=1750 nm with an initial signal photon at λs=1550 
nm and a final idler wavelength λi=1350 nm. If we allow unrestricted dispersion 
engineering via the width and thickness of the waveguide, the phase mismatch for that 
process is minimized for a cross section of 1.25µm x 0.9µm (width x height) which 
correspond to a phase mismatch of 𝛥𝛽=0.15 cm-1 < 2𝜋/𝐿	=6.28 cm-1 for a 1cm-long 
interaction. However, the tunability of the process is low: a change of 𝜔' requires a 
similarly large change of 𝜔$%. As an example, if we allow tuning of the pump over 
±0.5nm (something typical from a semiconductor laser diode), the signal can be tuned by 
1.2 nm.  
For a grating assisted waveguide, we are starting from a standard monomode waveguide 
cross section (as available via common MPW services) of 1µm x 0.8 µm. Without 
accounting for the grating, the phase mismatch would be 90 cm-1. This can be brought 
down to 0.26 cm-1 thanks to a grating with an index modulation 𝑑𝑛 = 2,4.1049 and a 
resonant wavelength 𝜆+,' = 2091.296 nm. Not only this offers more fabrication freedom 
but also improves the tunability. Because 𝛽$%,,55  exhibits a resonant behavior, a slight 

 
Figure 2. Schematic example of BS-4WM in presence of a grating. The light grey dotted line represents 
the waveguide dispersion 𝛽(𝜆)	without any grating, while the continuous black curve represents the 
dispersion in the presence of the grating. Close to the bandgap (vertical thin gray lines) the grating 
resonance change 𝛽(𝜆'() and allows phase-matching. If we want to tune some wavelengths of the system 
(ex. 𝜆) & 𝜆'*), the newly induced mismatch can be compensated by slightly tuning 𝜆'(	resulting in a 
high tunability of the system. 



 

 

tuning of 𝜆% will indeed results in a larger impact on phase-mismatch than in the previous 
case (similarly to figure 2). More specifically, a tuning of the pump wavelength by 0.1 
nm provides signal tunability over 30 nm.  
Without the presence of the grating, such a tuning would require the pump to be modified 
by a similar amount thus requiring a change of technology for the laser (external cavity 
laser or OPO). A demonstration is under investigation using a Bragg grating made from 
equally spaced pillars evanescently coupled to a straight SiN waveguide (1µm x 0.8µm). 
We then expect 𝛥𝛽 ≤ 	0.60 cm-1 for wavelengths 𝜆' ∈ [1530,1560] nm,  𝜆( ∈ [1340;1360] 
nm, 𝜆$% ∈ [2090.01; 2089.99] nm and 𝜆$&=1750 nm. 

To conclude, we demonstrate that the linear formula of Bragg gratings can be used in the 
nonlinear regime required for efficient conversion via BS-4WM. This allows easy 
predictions and designs of gratings dedicated to correct a given phase-mismatch for a 
given BS-4WM configuration. We simulated such a grating and observed in these 
simulations the correction of the phase-mismatch as well as a high tunability potential.   
In the future, the improvement of the acceptance bandwidth is another parameter to be 
maximized. The simultaneous use of several grating periods (a.k.a aperiodic gratings) 
might also bring additional tunability and possible other benefits. Moreover, we foresee 
that Bragg gratings can be exploited to forcefully mismatch spurious processes such as 
parametric fluorescence.  
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